
TEM Journal – Volume 1 / Number 1 / 2012. 9

The Strong Object Invariant

Dušan Malbaški 1, Aleksandar Kupusinac 1
1 Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

Abstract – The concept of an invariant is fundamental

to object-oriented programming, because it provides
information on the overall behaviour of the class and/or
its objects. An invariant is a predicate, that is true in
every state that is proclaimed as valid. A strong
invariant is a predicate, that is true in every valid state
and false in every invalid state. Basically, we can divide
them into two categories: object invariants and class
invariants. Object invariants describe the consistency of
object, i.e. non-static fields. Analysis of invariants takes
the most important place in object-oriented program
verification and can be directed in two ways – as
prescribed and as described. This paper considers both
analyses which are based on the strongest dynamic
postconditions of methods with the guard as the
precondition, thus, determining all possible transitions
and only them. In addition, since dynamic postconditions
are logical functions of the initial-final states, our
solution is based solely on the first-order predicate logic.

Keywords – Invariants, Object-oriented programming,

Program correctness, Program
verification.

1. Introduction

 Object-oriented programming has been created
through evolution, as a response to the software market
requests. Therefore, already during the development of
theory and practice the factual situation was
established in which there are different views on the
fundamental concepts of object-oriented methodology
– class, object and invariant. The terminology used in
object-oriented programming is not satisfactory,
because in addition to synonymy, it often meets
reckless use of the entrenched terms from other fields
of science (especially philosophy). The main problem
with the definitions in object-oriented programming is
that they all have a free form not allowing the object
and the class to have independent definitions. In this
paper we explain the conceptual definitions of class,
object and invariant [1] that are based on concepts. By
definition, a concept is the thought on the essential
characteristics of the unit of observation [2]. With this
approach, we can clearly explain what is the class
invariant, and what is object invariant.

 Analysis of invariants is a central point when it

comes to analyzing the semantics of class or semantics

of object-oriented programs [3]. The importance of
invariants in the analysis of the class semantics is
clearly described by Bertrand Meyer [4]: “To me the
notion of the invariant is one of the most illuminating
concepts that can be learned from the object-oriented
method. Only when I have derived the invariant (for a
class that I write) or read and understood it (for
someone else’s class) do I feel that I know what the
class is about.”. Invariant is every predicate that is true
in any valid state, while may or may not be true in an
invalid state. In particular, the predicate that uniquely
separates the set of valid and set of invalid states, we
call the strong invariant. In other words, a strong
invariant is any predicate that is true in every valid
state and false in every invalid state. However, since
all the strong invariants uniquely separate sets of valid
and invalid states, we conclude that all strong
invariants are uniform to the level of equivalence [5].

 Based on conceptual definitions, invariants in the
class are basically divided into object and class
invariants. Invariant property means that all the
methods are activated by one and only one object-
representative (i.e. this) and describes all valid states
in which that object can be found. Analysis of
invariants can be directed in two ways:
• as prescribed – invariant is given in advance and

we prove the class or object correctness with
respect to the given invariant [6],

• as described – we assume that the object or class
behaves correctly and based on that we derive the
invariant [7].

In this paper we will consider both analyses of object
invariants based on the strongest dynamic
postconditions of methods with the guard as the
precondition, provided that it determines all reachable
states and only them. In the Section 2 we consider
conceptual definitions of class, object and invariant.
Basic elements of the analysis of invariants are given
in the Section 3. In the Sections 4 and 5 we consider as
prescribed and as described analyses, respectively.

2. Conceptual definitions

 During the design of an information system, an
object-oriented developer would spend most of his
time for modelling. However, it should be noted here
that a developer deals with thoughts, not with actual

TEM Journal – Volume 1 / Number 1 / 2012. 10

participants of the information system. Therefore, our
presentation will begin with a definition of the
concept:

• The concept is the thought of essential
characteristics of the unit of observation [2],

where the term unit of observation should be
understood in the broadest sense, as a unit of
observation and/or thinking. Characteristics of the unit
can be divided into essential and inessential. The
thought of any characteristic is called property, and
the thought of the essential characteristic is called the
essential property [2]. Inessential properties can be
derived from the essential. For example, properties of
the concept TRIANGLE are being a convex polygon
and having three sides, while the altitudes equality in
an equilateral triangle is not an essential property,
because it follows from the equality of its sides.

Concepts can be classified in various ways, but for
our consideration, the most important is a division
between individual and class concepts. Individual
concepts refer to individual units of observation.
Individual units that have common properties
constitute a class, and the thought of a given class is
the class concept. Thus, individual concepts HAYDN,
MOZART and BEETHOVEN are the thoughts of
famous composers who have in common that they
belong to the period of classicism, and that their work
is more or less related to Vienna. Based on common
properties, they constitute a class, and thought of this
class is the class concept VIENNA CLASSICISTS.
Obviously, individual concepts may or may not be rea-
listic, while the class concepts are not. For example,
the class concept VIENNA CLASSICIST is not
realistic, while the individual concept MOZART is
realistic (composer Mozart existed in the period 1756-
1791 yr.). However, both individual and class concepts
TRIANGLE are not realistic. The more abstract class
concepts can be obtained from class concepts by the
method of abstraction, thus creating a hierarchy of
classes, which has a tree structure. For instance, from
the class concept VIENNA CLASSICIST, we can
obtain more abstract class concept COMPOSER, and
from this more abstract class concept ARTIST etc.

It is customary to begin learning object-oriented pro-
gramming with a consideration of the term entity. By
ISO definition, an entity is any concrete or abstract
thing that exists, that existed or could exist, including
connections between these things. We prefer to treat
entity as a synonym for the unit of observation and
find that there is no need to put it to the forefront,
because as already stated, information system
developer deals with concepts, i.e. thoughts.

 Consideration of all essential properties of a
concept in general is often a difficult philosophical

question, since it is not an easy task do decide whether
some feature is essential or not. In order to avoid such
difficulties we stick to the problem domain. In contrast
to the logician, the software developer does not have to
take into account all essential properties, but just those
that are relevant, i.e. those that are of interest for a
given problem domain. For example, designer of
information systems for tax administration for the
concept CITIZEN will choose properties name,
identification number, address, data on income etc.,
but certainly will not choose the properties height and
weight, although every citizen has them. On the other
hand, the designer of information systems for health
care institutions, next to the name, identification
number, address, etc., will safely select the height and
weight, because these properties are essential in
determining the patient treatment, while dropping data
on income. Let us introduce the following definitions:

• Concept properties that are of interest in a
given problem domain are called relevant
properties [5], [8].

• Software modelling is a procedure of selecting
concept features that are relevant to a given
problem domain. The appropriate result is
called software model [1].

Now, we can define a class:

• The class is a software model of the class
concept and it has identity, state and
behaviour.

The class concept properties are divided into two
groups: features and fragments. The class concept
may also contain other class concepts, and we call
them fragments. For instance, class concept CAR has
the feature colour and the fragment MOTOR. The
features can be descriptive, such as colour, weight,
etc., and operational as well as the possibility of
movement, ability to fly and so on. Now we present the
conceptual definition of the object:

• The object is a software model of the
individual concept and it has identity, state and
behaviour.

These definitions have two major advantages over

the various definitions that can be found in the
literature on object-oriented programming. Firstly,
conceptual definitions are based on concepts, i.e. the
well-elaborated and clear system of terms and their
meanings. Secondly, the conceptual definitions of
class and object are equal in the semantic sense, i.e.
class is not defined over the object or vice versa.

TEM Journal – Volume 1 / Number 1 / 2012. 11

Obviously, a conceptual aspect of class and object puts
them in equal position. The difference is that the class
corresponds to a class concept, and the object to an
individual concept. Classes and objects are interrelated
by an assumption, which actually has the power of a
postulate:

• For every object there exists a class that has all

of its relevant properties; we say that the
object belongs to that class.

 For example, each object isosceles triangle (with
specific side length values) belongs to the class
Isosceles triangle. Fragments and features of the class
appear in the class case, while the fragments and
features of the individual object appear in the
individual case. For instance, if the class feature is
colour, then the individual feature appears as white or
green.

 The concepts can be complex which means that
their fragments themselves may have fragments, and
so on. A book consists of chapters, chapters contain
paragraphs, paragraphs lines and lines contain
characters. The concept structure is the set consisting
of the concept itself, its fragments, and further their
fragments, etc., all moderated by the relation to be a
fragment. If the concept does not include fragments,
but only features, we say that it has a simple structure.
If it contains at least one fragment, then the concept
has a complex structure. For example, the concept
CAR contains fragment MOTOR, so it has complex
structure. The concept POINT contains only features,
such as coordinate values, so we say that it has a
simple structure. Since the object models an individual
concept, by modelling the concept structure we get the
object structure. Similarly, we can talk about simple
and complex object structures.

 The essential characteristics of an object are that it
has the identity, state and behaviour [9]. The
conceptual definition is not in conflict with these
essential characteristics. Indeed, since each individual
concept has identity that uniquely defines it, this
property is mapped on the object, as its model, and
each object has identity that uniquely defines it. The
state of an object with a simple structure determines its
descriptive features. The state of an object with
complex structure determines its descriptive features,
as well as states of its fragments. If we now consider
this conclusion using a different criterion, i.e. if we
firstly look the object state set, then it follows that the
descriptive features are derived from the state, i.e. they
are functions of the state. In the implementation phase
the data-members represent descriptive features, while
the object-members represent fragments. Operational
characteristics determine the object behaviour, which
is described by its methods. By the definition of the

object, it logically follows that the objects of the same
class have the same structure and same behaviour.
Class and object are related exactly as the data type
and variable in standard programming languages. For
example, int variables are occurrences (instances) of
int type and objects are occurrences (instances) of their
class.

 Among all the concept features, both descriptive
and operational, some never change: they constitute an
invariant. For the concept TRIANGLE, no matter
whether it is an individual or class concept, feature

cba >+ is an invariant, where a , b and c are the
descriptive features that represent side lengths, and
feature 180=++ γβα , where α , β and γ are the
descriptive features that represent the values of internal
angles. Obviously such an invariant holds, regardless
of the changes (transformations) on the concept.
Apparently, there are infinitely many invariants, all of
which together build the concept essence.

 Modelling assumes the choice of the finite set of
relevant features, both descriptive and operational. At
the same time, it implies the choice of invariant
features that are relevant to the particular model. Such
features are called invariant relevant features. All
invariant relevant features describe the concept
essence in a given problem domain. Above mentioned
features cba >+ and 180=++ γβα are
invariant. However, if the triangle is modelled only by
its side lengths a , b and c , then cba >+ is the
relevant invariant feature, while 180=++ γβα is
not. In the implementation phase we obtain an object
or class with a finite set of abstract states. Even than,
invariant relevant features remain valid in the form of
restrictions adopted on the final set of abstract states.
Let us now define the invariant in an object and a
class:

• Invariant in the object is the restriction of

invariant relevant feature of the appropriate
individual concept defined on the set of
abstract states [1].

• Invariant in the class is the restriction of
invariant relevant feature of the appropriate
class concept defined on the set of abstract
states [1].

Based on the fact that the invariant feature can be
descriptive as well as operational, after modelling, we
get several types of invariants [7]:

• Field invariants - come from the relevant

invariant descriptive features, and after
modelling represent the relation over the class
fields. For example, in the previous example,

TEM Journal – Volume 1 / Number 1 / 2012. 12

cba >+ is a field invariant, where a , b and
c are the class fields.

• Functional invariants - come from the
operational invariant relevant features, and
after modelling connect methods in sense of
implementation. For example successive
application of the methods push and pop
leaves the stack in the same state.

• Relationship invariants - a typical example is
the relationship cardinality between concepts,
e.g. relationship cardinality between concepts
TRIANGLE and VERTEX is 1:3.

• Mixed forms.

 In addition, there are invariants that are defined in

the implementation phase, although they may not be in
the problem domain. For example, a sequential stack
with capacity C is restricted to C or less elements,
while for the linked stack such limitation does not
exist.

 Consider now an object with a simple structure
containing only the data-members of some type. Say,
if data-member a (the triangle side length) is of the
type real number, the question is - does this type
matches the corresponding relevant concept feature?
Although everything seems logical, unfortunately, the
answer is negative, because the length of the triangle
side may be of the type length, only. Such type does
not exist in any programming language, but we have to
improvise and say that the data-member is of the type
positive real number. However, it does not end the
problem, because the question is - can any three
positive real numbers represent the side lengths of a
triangle? Again the answer is negative, because these
three numbers must satisfy the triangle inequality
theorem (the sum of the lengths of any two sides of
triangle is greater that the length of the third side). In
other words, the invariant relevant feature of the
concept TRIANGLE must be valid. It is now
abundantly clear problem - on the one hand we have
requests coming from the nature of the concept feature,
and on the other hand we have the reality imposed by
the descriptive power of programming languages.
Therefore, it is fully justified to divide the final set of
abstract states into two disjoint subsets, which are sets
of valid and invalid states. For example, when it
comes to a triangle, state (3, 4, 5) is valid, while states
(-3, -4, -5) and (5, 1, 1) are invalid.

3. Basic elements of the analysis of object
invariants

 Let the class K contain only non-static fields
nφφφ ...,,, 21 . To the class K we assign a finite

nonempty set of abstract states KU . The set of all
fields of the class K is denoted by KΦ . Assuming
that there is at least one field in the class it follows that

≠ΦK Ø, so ≠KU Ø.

Definition 1. (Abstract state space) The abstract space
of the class K is a nonempty finite set of abstract
states KU that is assigned to the class K .

 The abstract state space KU we divide into two
disjoint parts, namely the sets of valid states KV and
invalid states KN . The set of valid states KV is
assumed to be nonempty. Null-state o is a valid
(quasi) state that an object occupies before its
construction or after its destruction, i.e. when

nullthis = , where this stands for the representative
object. The set of all methods in the class K is
denoted by KM provided that ≠KM Ø.

Definition 2. (Invariant) Let the class K contain only
non-static fields. An invariant in the class K is every
predicate KI defined over its abstract state space KU

that is true in every valid state.

Definition 3. (Strong invariant) Let the class K
contain only non-static fields. Strong invariant in the
class K is any predicate KIS defined over KU with
the properties:

1.) KIS is an invariant in the class K ,
2.) If I is an invariant in the class K then

)()(, sIsISUs KK ⇒∈∀ .

 Note that the invariant must be true in all valid
states, whilst in invalid states it may or may not. In the
class K a strong invariant always exists and it is
unique up to the level of equivalency [7]. Strong
invariant completely defines the set of valid states, i.e.

)}(,|{ sISUssV KKK ∈= .
 Hoare triples [10], [11] are two special formulas of

the first-order predicate calculus [12] defined over the
abstract state space KU . We introduce dynamic form
of the total correctness formula (DTCF) in the object
oriented environment:

))]',(ˆ)',((')',(')([ssQssmsssmssPs ⇒∀∧∃⇒∀

shortly denoted by }ˆ{}{ QmP , where the postcondition

)',(ˆ ssQ is now dynamic [13], meaning that it is a
function of initial and final states, thus representing the

TEM Journal – Volume 1 / Number 1 / 2012. 13

transition function. In order to avoid confusion we will
denote dynamic postconditions by the sign “ ^ ”. The
structures of static and dynamic total correctness for-
mulas are the same. The predicate)',(ˆ ssQ can be for-
mally replaced by the predicate)'(sR such that

)'()',(ˆ' sRssQss ⇔∀∀ , so the mathematical
apparatus developed in the scope of static
postconditions may be used for dynamic without any
restrictions, e.g. all general laws of Hoare logic hold in
dynamic environment as well, such as the laws of
consequence, conjunction, disjunction etc. The inter-
pretation of formula }ˆ{}{ QmP is the following – if
the predicate P is true in some state then the method
m terminates from that state and the transition will
occur that satisfies the dynamic predicate Q̂ . The set
of all states from which a method terminates is
described by a special predicate called guard [14],
[15].

Definition 4. (Guard) The guard of the method m
denoted by)(mΓ is a predicate with the following
properties:
1.) {)}({ mmΓ ⊤} , i.e. if the precondition)(mΓ is

satisfied than the method m must terminate,
2.) {}{ mP ⊤)))(()((} smsPs Γ⇒∀⇒ .

Definition 5. (Strongest dynamic postcondition) The
strongest dynamic postcondition of the method m with
respect to the precondition P is predicate),(ˆ Pmpds
if:
1.))},(ˆ{}{ PmpdsmP ,

2.)))',(ˆ)',)(,(ˆ('}ˆ{}{ ssQssPmpdsssQmP ⇒∀∀⇒ .

 The most important case is the strongest dynamic
postcondition with the guard Γ as the precondition.
Let m be a method of the class K . The dynamic
predicate))(,(ˆ mmpds Γ determines all valid
transitions that can be accomplished by m and only
them [13].

4. As Prescribed Analysis

 In the as prescribed analysis invariant is given in
advance and we prove the class or object correctness
with respect to the given invariant [6].

Definition 6. (Class correctness) Class K , with strong
invariant KIS , is correct iff:

}{})({ KK ISmISm ∧Γ ,

for all methods KMm∈ .

Theorem 1. (As prescribed analysis) Let KIS be
strong invariant of the class K . If

KK ISISmmpds ⇒∧Γ))(,(ˆ ,
where KMm∈ , then class K is correct.

Proof.
Let KMm∈ and

KK ISISmmpds ⇒∧Γ))(,(ˆ . (1)

Based on property (1) from the Definition 5, we infer

)})(,(ˆ{})({ KK ISmmpdsmISm ∧Γ∧Γ . (2)

Based on the second Hoare law of consequence, by (1)
and (2) we obtain

}{})({ KK ISmISm ∧Γ
Q.E.D.

Now, let us consider the following class written in
Java:

public class K {
private int n;
public K() { n=0; }
public void m() {
n++;
if(n>10)

throw new RuntimeException();
}

}
with the strong invariant:

)100(≤≤∧≠∨=≡ nnullthisnullthisISK .
Based on the class K , we obtain:

nullthisK =≡Γ)(,
9)(≤∧≠≡Γ nnullthism ,

0))(,(ˆ =′∧≠′∧=≡Γ nnullsthinullthisKKpds ,

19))(,(ˆ +=′∧≤∧≠′∧≠≡Γ nnnnullsthinullthismmpds

Since

nullthisISK K =≡∧Γ)(,

90)(≤≤∧≠≡∧Γ nnullthisISm K ,

we obtain

0))(,(ˆ =′∧≠′∧=≡∧Γ nnullsthinullthisISKKpds K
,

190))(,(ˆ +=′∧≤≤∧≠′∧≠≡∧Γ nnnnullsthinullthisISmmpds K

i.e.

TEM Journal – Volume 1 / Number 1 / 2012. 14

KK ISISKKpds ⇒∧Γ))(,(ˆ ,

KK ISISmmpds ⇒∧Γ))(,(ˆ

and we conclude that class K is correct.

5. As Described Analysis

 In the as described analysis we assume that the
object or class behaves correctly and based on that we
derive the invariant [7]. Let the predicate 0Z describe
some valid states of the class K and only them. Let us
form the following recursive sequence of predicates:

Algorithm 1.

),(ˆ),(ˆ),(ˆ
0020101 ZmpdsZmpdsZmpdsZZ n∨∨∨∨≡ 

,

),(ˆ),(ˆ),(ˆ
1121112 ZmpdsZmpdsZmpdsZZ n∨∨∨∨≡ 

,

),(ˆ),(ˆ),(ˆ
2222123 ZmpdsZmpdsZmpdsZZ n∨∨∨∨≡ 

,


where Kn Mmmm ∈,,, 21  . Consequently,

⊆⊆⊆ 210 ZZZ .

Let },,,{ 210 ZZZZ = . The set Z is a complete
chain since each if its subsets has the greatest lower
bound and the least upper bound. Now, consider the
mapping ZZ →:σ of the form

),(ˆ),(ˆ),(ˆ)(21 zmpdszmpdszmpdszz n∨∨∨∨= σ

,

where Zz∈ . Obviously, it follows that

)(1 ii ZZ σ≡+ , ,2,1,0=i .

Lemma 1. The function σ is monotonic on the chain
Z .

Proof.
Suppose that yx ⇒ , where Zyx ∈, . Let jZx ≡ ,

then kZy ≡ , where jk ≥ . According to the property
)(1 ii ZZ σ≡+ , ,2,1,0=i , we obtain 1)(+≡ jZxσ

and 1)(+≡ kZyσ and conclude that 11 ++ ⇒ kj ZZ , i.e.

)()(yx σσ ⇒ . Based on that, we conclude that the
function σ is monotonic on the chain Z .

Q.E.D.

Lemma 2. The function σ has the least fixpoint on
the chain Z .

Proof.
By Tarski theorem [16] and Lemma 1, the function σ
has a least fixpoint fixZ on the complete chain Z , for

which fixfix ZZ ≡)(σ .
Q.E.D.

Further, if fixZ is the least fixpoint (Lemma 2) then
obviously

fixj ZZfixj ≡≥∀)(,

where },2,1,0{, ∈jfix . For the sake of simplicity
we introduce the function fixp :

),(0 σZfixpZ fix ≡ .

Theorem 2. (As described analysis) The predicate
),(σOfixpZ fix ≡ is a strong object invariant in the

class K , where nullthisO =≡ stands for null-
predicate.

Proof.
The predicate OZ ≡0 describes null-state and only it.
By definition null-state is valid, so all states reachable
from it after fix transitions are also valid. Thus the
left to right implication holds, i.e.

)()(sISsZs Kfix ⇒∀ . Now, suppose that t is a valid

state such that ≡⊥)(tZ fix . That means that the state t
is not reachable after fix transitions when starting in
null-state described by 0Z . But then t can not be
valid, so right to left implication also holds, i.e.

)()(sZsISs fixK ⇒∀ . Since both implications hold,

the equivalence)()(sISsZs Kfix ⇔∀ also holds and
that proves the theorem.

Q.E.D.

Now, let us consider the previous Java class:

public class K {
private int n;
public K() { n=0; }
public void m() {
n++;
if(n>10)

TEM Journal – Volume 1 / Number 1 / 2012. 15

throw new RuntimeException();
}

}

Based on the class K , we obtain:

nullthisK =≡Γ)(,
9)(≤∧≠≡Γ nnullthism ,

0))(,(ˆ =′∧≠′∧=≡Γ nnullsthinullthisKKpds ,

19))(,(ˆ +=′∧≤∧≠′∧≠≡Γ nnnnullsthinullthismmpds
.

We adopt that nullthisZ =≡0 and form the
following recursive sequence of predicates:

)0(01 =∧≠∨≡ nnullthisZZ ,

})1,0{(12 ∈∧≠∨≡ nnullthisZZ ,


})10,,1,0{(1011 ∈∧≠∨≡ nnullthisZZ ,

})10,,1,0{(1112 ∈∧≠∨≡ nnullthisZZ .

Since 1211 ZZ ≡ we conclude that the predicate 11Z is
a fixpoint and

)100(≤≤∧≠∨=≡ nnullthisnullthisISK
is the strong object invariant.

6. Conclusions

 Conceptual definitions, given in this paper, allow
independent consideration of class and object
characteristics. From this conclusion, it is possible to
clearly classify invariants in the class, which is the
basis for the analysis of invariants. Analysis of class
invariants has a central place in the class semantics,
and therefore in the semantics of object-oriented
programs. Analysis of invariants can be as prescribed,
where the invariant is given in advance and as
described, where the invariant is derived from the
class. In this paper we have presented both analyses of
object invariants that are based on the strongest
dynamic postconditions of methods with the guard as
the precondition.

Acknowledgements

 This work was partially supported by the Ministry of
Science and Education of the Republic of Serbia within the
projects: ON 174026 and III 044006.

References

[1] Malbaški, D. and Kupusinac, A : Classification of
Invariants in Class Based on Conceptual Definitions,
15th International Scientific Conference on Industrial
Systems (IS’11), Novi Sad, Serbia, 14. – 16. September,
2011.

[2] Petrović, G. : Logic, (in Serbian), Školska knjiga,
Zagreb, Yugoslavia, 1981.

[3] Logozzo, F. : Class invariants as abstract interpretation
of trace semantics, Computer Languages, Systems &
Structures, Elsevier, vol. 35, num. 2, pp. 100-142, July
2009.

[4] Meyer, B. : Object-Oriented Software Construction,
(2nd edition), Prentice Hall, 1997.

[5] Kupusinac, A. and Malbaški, D. : Class invariant in the
object-oriented programming and its application, (in
Serbian), In Proc. 15th TELFOR, Belgrade, Serbia, 20-
22. November, 2007, pp. 589-592, ISBN: 978-86-7466-
301-1.

[6] Kupusinac, A. and Malbaški, D. : General Aspects of
the As Prescribed Analysis of Invariants in the Class, In
Proc. 19th TELFOR, Belgrade, Serbia, 22-24.
November, 2011, pp. 1379-1381, ISBN: 978-1-4577-
1498-6.

[7] Malbaški, D. : The invariants in the class, (in Serbian),
Faculty of Technical Sciences, Novi Sad, Serbia, Tech.
Rep. 021-21/24, 2010.

[8] Kupusinac, A. : Class invariant in the object-oriented
programming, MSc thesis, (in Serbian), Faculty of
Technical Sciences, Novi Sad, Serbia, 2008. (Mentor:
Prof. dr Dušan Malbaški)

[9] Booch, G. : Object-Oriented Analysis and Design, (2nd
edition), Addison-Wesley, 1994.

[10] Hoare, C. A. R. : An Axiomatic Basis for Computer
Programming, Comunications of the ACM, vol. 12,
num. 10, pp. 576-585, October 1969.

[11] Gordon, M. J. C. : Programming Language Theory and
its Implementation, Prentice-Hall, 1988.

[12] Hoare, C. A. R. and Jifeng, H. : Unifying Theories of
Programming, Prentice-Hall, 1998.

[13] Kupusinac, A. : Analysis of Characteristics of Dynamic
Postconditions in Hoare Triples, Ph.D. thesis, (in
Serbian), Faculty of Technical Sciences, Novi Sad,
Serbia, 2010. (Mentor: Prof. dr Dušan Malbaški)

[14] Dijkstra, E. W. : Guarded Commands, Nondeterminacy
and Formal Derivation of Programs, Comunications of the
ACM, vol. 18, num. 8, pp. 453–457, August 1975.

[15] Dijkstra, E. W. : A Discipline of Programming.
Prentice-Hall, 1976.

[16] Tarski, A. : Guarded Commands, Nondeterminacy and
Formal Derivation of Programs, Pacific Journal of
Mathematics, vol. 5, pp. 285-309, 1955.

Corresponding author: Aleksandar Kupusinac
Institution: Faculty of Technical Sciences, University of

Novi Sad, Novi Sad, Serbia
E-mail: sasak@uns.ac.rs

