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Abstract – The concept of an invariant is fundamental 

to object-oriented programming, because it provides 
information on the overall behaviour of the class and/or 
its objects. An invariant is a predicate, that is true in 
every state that is proclaimed as valid. A strong 
invariant is a predicate, that is true in every valid state 
and false in every invalid state. Basically, we can divide 
them into two categories: object invariants and class 
invariants. Object invariants describe the consistency of 
object, i.e. non-static fields. Analysis of invariants takes 
the most important place in object-oriented program 
verification and can be directed in two ways – as 
prescribed and as described. This paper considers both 
analyses which are based on the strongest dynamic 
postconditions of methods with the guard as the 
precondition, thus, determining all possible transitions 
and only them. In addition, since dynamic postconditions 
are logical functions of the initial-final states, our 
solution is based solely on the first-order predicate logic. 
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1. Introduction 

 
     Object-oriented programming has been created 
through evolution, as a response to the software market 
requests. Therefore, already during the development of 
theory and practice the factual situation was 
established in which there are different views on the 
fundamental concepts of object-oriented methodology 
– class, object and invariant. The terminology used in 
object-oriented programming is not satisfactory, 
because in addition to synonymy, it often meets 
reckless use of the entrenched terms from other fields 
of science (especially philosophy). The main problem 
with the definitions in object-oriented programming is 
that they all have a free form not allowing the object 
and the class to have independent definitions. In this 
paper we explain the conceptual definitions of class, 
object and invariant [1] that are based on concepts. By 
definition, a concept is the thought on the essential 
characteristics of the unit of observation [2]. With this 
approach, we can clearly explain what is the class 
invariant, and what is object invariant. 

  
 
 
 Analysis of invariants is a central point when it 

comes to analyzing the semantics of class or semantics 

of object-oriented programs [3]. The importance of 
invariants in the analysis of the class semantics is 
clearly described by Bertrand Meyer [4]: “To me the 
notion of the invariant is one of the most illuminating 
concepts that can be learned from the object-oriented 
method. Only when I have derived the invariant (for a 
class that I write) or read and understood it (for 
someone else’s class) do I feel that I know what the 
class is about.”. Invariant is every predicate that is true 
in any valid state, while may or may not be true in an 
invalid state. In particular, the predicate that uniquely 
separates the set of valid and set of invalid states, we 
call the strong invariant. In other words, a strong 
invariant is any predicate that is true in every valid 
state and false in every invalid state. However, since 
all the strong invariants uniquely separate sets of valid 
and invalid states, we conclude that all strong 
invariants are uniform to the level of equivalence [5]. 

   Based on conceptual definitions, invariants in the 
class are basically divided into object and class 
invariants. Invariant property  means that all the 
methods are activated by one and only one object-
representative (i.e. this) and describes all valid states 
in which that object can be found. Analysis of 
invariants can be directed in two ways: 
• as prescribed – invariant is given in advance and 

we prove the class or object correctness with 
respect to the given invariant [6], 

• as described – we assume that the object or class 
behaves correctly and based on that we derive the 
invariant [7]. 

In this paper we will consider both analyses of object 
invariants based on the strongest dynamic 
postconditions of methods with the guard as the 
precondition, provided that it determines all reachable 
states and only them. In the Section 2 we consider 
conceptual definitions of class, object and invariant. 
Basic elements of the analysis of invariants are given 
in the Section 3. In the Sections 4 and 5 we consider as 
prescribed and as described analyses, respectively. 

 

2. Conceptual definitions 
 

      During the design of an information system, an 
object-oriented developer would spend most of his 
time for modelling. However, it should be noted here 
that a developer deals with thoughts, not with actual 
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participants of the information system. Therefore, our 
presentation will begin with a definition of the 
concept: 
 

• The concept is the thought of essential 
characteristics of the unit of observation [2], 

 
where the term unit of observation should be 
understood in the broadest sense, as a unit of 
observation and/or thinking. Characteristics of the unit 
can be divided into essential and inessential. The 
thought of any characteristic is called property, and 
the thought of the essential characteristic is called the 
essential property  [2]. Inessential properties can be 
derived from the essential. For example, properties of 
the concept TRIANGLE are being a convex polygon 
and having three sides, while the altitudes equality in 
an equilateral triangle is not an essential property, 
because it follows from the equality of its sides. 

Concepts can be classified in various ways, but for 
our consideration, the most important is a division 
between individual and class concepts. Individual 
concepts refer to individual units of observation. 
Individual units that have common properties 
constitute a class, and the thought of a given class is 
the class concept. Thus, individual concepts HAYDN, 
MOZART and BEETHOVEN are the thoughts of 
famous composers who have in common that they 
belong to the period of classicism, and that their work 
is more or less related to Vienna. Based on common 
properties, they constitute a class, and thought of this 
class is the class concept VIENNA CLASSICISTS. 
Obviously, individual concepts may or may not be rea-
listic, while the class concepts are not. For example, 
the class concept VIENNA CLASSICIST is not 
realistic, while the individual concept MOZART is 
realistic (composer Mozart existed in the period 1756-
1791 yr.). However, both individual and class concepts 
TRIANGLE are not realistic. The more abstract class 
concepts can be obtained from class concepts by the 
method of abstraction, thus creating a hierarchy of 
classes, which has a tree structure. For instance, from 
the class concept VIENNA CLASSICIST, we can 
obtain more abstract class concept COMPOSER, and 
from this more abstract class concept ARTIST etc. 

It is customary to begin learning object-oriented pro-
gramming with a consideration of the term entity. By 
ISO definition, an entity is any concrete or abstract 
thing that exists, that existed or could exist, including 
connections between these things. We prefer to treat 
entity as a synonym for the unit of observation and 
find that there is no need to put it to the forefront, 
because as already stated, information system 
developer deals with concepts, i.e. thoughts. 

  Consideration of all essential properties of a 
concept in general is often a difficult philosophical 

question, since it is not an easy task do decide whether 
some feature is essential or not. In order to avoid such 
difficulties we stick to the problem domain. In contrast 
to the logician, the software developer does not have to 
take into account all essential properties, but just those 
that are relevant, i.e. those that are of interest for a 
given problem domain. For example, designer of 
information systems for tax administration for the 
concept CITIZEN will choose properties name, 
identification number, address, data on income etc., 
but certainly will not choose the properties height and 
weight, although every citizen has them. On the other 
hand, the designer of information systems for health 
care institutions, next to the name, identification 
number, address, etc., will safely select the height and 
weight, because these properties  are essential in 
determining the patient treatment, while dropping data 
on income. Let us introduce the following definitions: 

• Concept properties that are of interest in a 
given problem domain are called relevant 
properties [5], [8]. 

• Software modelling is a procedure of selecting 
concept features that are relevant to a given 
problem domain. The appropriate result is 
called software model [1]. 
 

Now, we can define a class: 

• The class is a software model of the class 
concept and it has identity, state and 
behaviour. 
 

The class concept properties are divided into two 
groups: features and fragments. The class concept 
may also contain other class concepts, and we call 
them fragments. For instance, class concept CAR has 
the feature colour and the fragment MOTOR. The 
features can be descriptive, such as colour, weight, 
etc., and operational as well as the possibility of 
movement, ability to fly and so on. Now we present the 
conceptual definition of the object: 

• The object is a software model of the 
individual concept and it has identity, state and 
behaviour. 

 
These definitions have two major advantages over 

the various definitions that can be found in the 
literature on object-oriented programming. Firstly, 
conceptual definitions are based on concepts, i.e. the 
well-elaborated and clear system of terms and their 
meanings. Secondly, the conceptual definitions of 
class and object are equal in the semantic sense, i.e. 
class is not defined over the object or vice versa. 
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Obviously, a conceptual aspect of class and object puts 
them in equal position. The difference is that the class 
corresponds to a class concept, and the object to an 
individual concept. Classes and objects are interrelated 
by an assumption, which actually has the power of a 
postulate: 

 
• For every object there exists a class that has all 

of its relevant properties; we say that the 
object belongs to that class. 

 
      For example, each object isosceles triangle (with 
specific side length values) belongs to the class 
Isosceles triangle. Fragments and features of the class 
appear in the class case, while the fragments and 
features of the individual object appear in the 
individual case. For instance, if the class feature is 
colour, then the individual feature appears as white or 
green. 
 

  The concepts can be complex which means that 
their fragments themselves may have fragments, and 
so on. A book consists of chapters, chapters contain 
paragraphs, paragraphs lines and lines contain 
characters. The concept structure is the set consisting 
of the concept itself, its fragments, and further their 
fragments, etc., all moderated by the relation to be a 
fragment. If the concept does not include fragments, 
but only features, we say that it has a simple structure. 
If it contains at least one fragment, then the concept 
has a complex structure. For example, the concept 
CAR contains fragment MOTOR, so it has complex 
structure. The concept POINT contains only features, 
such as coordinate values, so we say that it has a 
simple structure. Since the object models an individual 
concept, by modelling the concept structure we get the 
object structure. Similarly, we can talk about simple 
and complex object structures. 

  The essential characteristics of an object are that it 
has the identity, state and behaviour [9]. The 
conceptual definition is not in conflict with these 
essential characteristics. Indeed, since each individual 
concept has identity that uniquely defines it, this 
property  is mapped on the object, as its model, and 
each object has identity that uniquely defines it. The 
state of an object with a simple structure determines its 
descriptive features. The state of an object with 
complex structure determines its descriptive features, 
as well as states of its fragments. If we now consider 
this conclusion using a different criterion, i.e. if we 
firstly look the object state set, then it follows that the 
descriptive features are derived from the state, i.e. they 
are functions of the state. In the implementation phase 
the data-members represent descriptive features, while 
the object-members represent fragments. Operational 
characteristics determine the object behaviour, which 
is described by its methods. By the definition of the 

object, it logically follows that the objects of the same 
class have the same structure and same behaviour. 
Class and object are related exactly as the data type 
and variable in standard programming languages. For 
example, int variables are occurrences (instances) of 
int type and objects are occurrences (instances) of their 
class. 

   Among all the concept features, both descriptive 
and operational, some never change: they constitute an 
invariant. For the concept TRIANGLE, no matter 
whether it is an individual or class concept, feature 

cba >+  is an invariant, where a , b  and c  are the 
descriptive features that represent side lengths, and 
feature 180=++ γβα , where α , β  and γ  are the 
descriptive features that represent the values of internal 
angles. Obviously such an invariant holds, regardless 
of the changes (transformations) on the concept. 
Apparently, there are infinitely many invariants, all of 
which together build the concept essence. 

   Modelling assumes the choice of the finite set of 
relevant features, both descriptive and operational. At 
the same time, it implies the choice of invariant 
features that are relevant to the particular model. Such 
features are called invariant relevant features. All 
invariant relevant features describe the concept 
essence in a given problem domain. Above mentioned 
features cba >+  and 180=++ γβα  are 
invariant. However, if the triangle is modelled only by 
its side lengths a , b  and c , then cba >+  is the 
relevant invariant feature, while 180=++ γβα  is 
not. In the implementation phase we obtain an object 
or class with a finite set of abstract states. Even than, 
invariant relevant features remain valid in the form of 
restrictions adopted on the final set of abstract states. 
Let us now define the invariant in an object and a 
class: 

 
• Invariant in the object is the restriction of 

invariant relevant feature of the appropriate 
individual concept defined on the set of 
abstract states [1]. 

• Invariant in the class is the restriction of 
invariant relevant feature of the appropriate 
class concept defined on the set of abstract 
states [1]. 
 

Based on the fact that the invariant feature can be 
descriptive as well as operational, after modelling, we 
get several types of invariants [7]: 

 
• Field invariants - come from the relevant 

invariant descriptive features, and after 
modelling represent the relation over the class 
fields. For example, in the previous example, 
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cba >+  is a field invariant, where a , b  and 
c  are the class fields. 

• Functional invariants - come from the 
operational invariant relevant features, and 
after modelling connect methods in sense of 
implementation. For example successive 
application of the methods push and pop 
leaves the stack in the same state. 

• Relationship invariants - a typical example is 
the relationship cardinality between concepts, 
e.g. relationship cardinality between concepts 
TRIANGLE and VERTEX is 1:3. 

• Mixed forms. 
 
  In addition, there are invariants that are defined in 

the implementation phase, although they may not be in 
the problem domain. For example, a sequential stack 
with capacity C  is restricted to C  or less elements, 
while for the linked stack such limitation does not 
exist. 

   Consider now an object with a simple structure 
containing only the data-members of some type. Say, 
if data-member a  (the triangle side length) is of the 
type real number, the question is - does this type 
matches the corresponding relevant concept feature? 
Although everything seems logical, unfortunately, the 
answer is negative, because the length of the triangle 
side may be of the type length, only. Such type does 
not exist in any programming language, but we have to 
improvise and say that the data-member is of the type 
positive real number. However, it does not end the 
problem, because the question is - can any three 
positive real numbers represent the side lengths of a 
triangle? Again the answer is negative, because these 
three numbers must satisfy the triangle inequality 
theorem (the sum of the lengths of any two sides of 
triangle is greater that the length of the third side). In 
other words, the invariant relevant feature of the 
concept TRIANGLE must be valid. It is now 
abundantly clear problem - on the one hand we have 
requests coming from the nature of the concept feature, 
and on the other hand we have the reality imposed by 
the descriptive power of programming languages. 
Therefore, it is fully justified to divide the final set of 
abstract states into two disjoint subsets, which are sets 
of valid and invalid states. For example, when it 
comes to a triangle, state (3, 4, 5) is valid, while states 
(-3, -4, -5) and (5, 1, 1) are invalid. 

 

3. Basic elements of the analysis of object 
invariants 

      Let the class K  contain only non-static fields 
nφφφ ...,,, 21 . To the class K  we assign a finite 

nonempty set of abstract states KU . The set of all 
fields of the class K  is denoted by KΦ . Assuming 
that there is at least one field in the class it follows that 

≠ΦK Ø, so ≠KU Ø. 
 
Definition 1. (Abstract state space) The abstract space 
of the class K  is a nonempty finite set of abstract 
states KU  that is assigned to the class K . 
 
      The abstract state space KU  we divide into two 
disjoint parts, namely the sets of valid states KV  and 
invalid states KN . The set of valid states KV  is 
assumed to be nonempty. Null-state o  is a valid 
(quasi) state that an object occupies before its 
construction or after its destruction, i.e. when 

nullthis = , where this  stands for the representative 
object. The set of all methods in the class K  is 
denoted by KM  provided that ≠KM Ø. 
 
Definition 2. (Invariant) Let the class K  contain only 
non-static fields. An invariant in the class K  is every 
predicate KI  defined over its abstract state space KU  

that is true in every valid state. 
 
Definition 3. (Strong invariant) Let the class K  
contain only non-static fields. Strong invariant in the 
class K  is any predicate KIS  defined over KU  with 
the properties: 
 
1.) KIS  is an invariant in the class K , 
2.) If I  is an invariant in the class K  then 

)()(, sIsISUs KK ⇒∈∀ . 
 
      Note that the invariant must be true in all valid 
states, whilst in invalid states it may or may not. In the 
class K  a strong invariant always exists and it is 
unique up to the level of equivalency [7]. Strong 
invariant completely defines the set of valid states, i.e. 

)}(,|{ sISUssV KKK ∈= . 
 Hoare triples [10], [11] are two special formulas of 

the first-order predicate calculus [12] defined over the 
abstract state space KU . We introduce dynamic form 
of the total correctness formula (DTCF) in the object 
oriented environment: 

 
))]',(ˆ)',((')',(')([ ssQssmsssmssPs ⇒∀∧∃⇒∀  

 

shortly denoted by }ˆ{}{ QmP , where the postcondition 

)',(ˆ ssQ  is now dynamic [13], meaning that it is a 
function of initial and final states, thus representing the 
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transition function. In order to avoid confusion we will 
denote dynamic postconditions by the sign “ ^ ”. The 
structures of static and dynamic total correctness for-
mulas are the same. The predicate )',(ˆ ssQ  can be for-
mally replaced by the predicate )'(sR  such that 

)'()',(ˆ' sRssQss ⇔∀∀ , so the mathematical 
apparatus developed in the scope of static 
postconditions may be used for dynamic without any 
restrictions, e.g. all general laws of Hoare logic hold in 
dynamic environment as well, such as the laws of 
consequence, conjunction, disjunction etc. The inter-
pretation of formula }ˆ{}{ QmP  is the following – if 
the predicate P  is true in some state then the method 
m  terminates from that state and the transition will 
occur that satisfies the dynamic predicate Q̂ . The set 
of all states from which a method terminates is 
described by a special predicate called guard [14], 
[15].  
 
Definition 4. (Guard) The guard of the method m  
denoted by )(mΓ  is a predicate with the following 
properties: 
1.) {)}({ mmΓ ⊤} , i.e. if the precondition )(mΓ  is 

satisfied than the method m  must terminate, 
2.) {}{ mP ⊤ )))(()((} smsPs Γ⇒∀⇒ . 
 
Definition 5. (Strongest dynamic postcondition) The 
strongest dynamic postcondition of the method m  with 
respect to the precondition P  is predicate ),(ˆ Pmpds  
if: 
1.) )},(ˆ{}{ PmpdsmP , 

2.) ))',(ˆ)',)(,(ˆ('}ˆ{}{ ssQssPmpdsssQmP ⇒∀∀⇒ . 
 
    The most important case is the strongest dynamic 
postcondition with the guard Γ  as the precondition. 
Let m  be a method of the class K . The dynamic 
predicate ))(,(ˆ mmpds Γ  determines all valid 
transitions that can be accomplished by m  and only 
them [13]. 
 

4. As Prescribed Analysis 

    In the as prescribed analysis invariant is given in 
advance and we prove the class or object correctness 
with respect to the given invariant [6]. 
 
Definition 6. (Class correctness) Class K , with strong 
invariant KIS , is correct iff: 

}{})({ KK ISmISm ∧Γ , 

for all methods KMm∈ . 
 
Theorem 1. (As prescribed analysis) Let KIS  be 
strong invariant of the class K . If 

KK ISISmmpds ⇒∧Γ ))(,(ˆ , 
where KMm∈ , then class K  is correct. 
 
Proof. 
Let KMm∈  and 

KK ISISmmpds ⇒∧Γ ))(,(ˆ . (1) 

 
Based on property (1) from the Definition 5, we infer 

)})(,(ˆ{})({ KK ISmmpdsmISm ∧Γ∧Γ . (2) 

 
Based on the second Hoare law of consequence, by (1) 
and (2) we obtain 

}{})({ KK ISmISm ∧Γ   
Q.E.D. 

 
Now, let us consider the following class written in 
Java: 
 
public class K { 
private int n; 
public K() { n=0; } 
public void m() { 
n++; 
if(n>10)  

throw new RuntimeException(); 
} 

} 
with the strong invariant: 

)100( ≤≤∧≠∨=≡ nnullthisnullthisISK . 
Based on the class K , we obtain: 
 

nullthisK =≡Γ )( , 
9)( ≤∧≠≡Γ nnullthism , 

0))(,(ˆ =′∧≠′∧=≡Γ nnullsthinullthisKKpds , 

19))(,(ˆ +=′∧≤∧≠′∧≠≡Γ nnnnullsthinullthismmpds   
 
Since 

nullthisISK K =≡∧Γ )( , 

90)( ≤≤∧≠≡∧Γ nnullthisISm K , 
 
we obtain 
 

0))(,(ˆ =′∧≠′∧=≡∧Γ nnullsthinullthisISKKpds K
, 

190))(,(ˆ +=′∧≤≤∧≠′∧≠≡∧Γ nnnnullsthinullthisISmmpds K
 
i.e. 
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KK ISISKKpds ⇒∧Γ ))(,(ˆ , 

KK ISISmmpds ⇒∧Γ ))(,(ˆ  
 
and we conclude that class K  is correct. 

5. As Described Analysis 

     In the as described analysis we assume that the 
object or class behaves correctly and based on that we 
derive the invariant [7]. Let the predicate 0Z  describe 
some valid states of the class K  and only them. Let us 
form the following recursive sequence of predicates: 
 
Algorithm 1. 
 

),(ˆ),(ˆ),(ˆ
0020101 ZmpdsZmpdsZmpdsZZ n∨∨∨∨≡ 

, 

),(ˆ),(ˆ),(ˆ
1121112 ZmpdsZmpdsZmpdsZZ n∨∨∨∨≡ 

, 

),(ˆ),(ˆ),(ˆ
2222123 ZmpdsZmpdsZmpdsZZ n∨∨∨∨≡ 

, 
  
 
where Kn Mmmm ∈,,, 21  . Consequently, 

⊆⊆⊆ 210 ZZZ . 

Let },,,{ 210 ZZZZ = . The set Z  is a complete 
chain since each if its subsets has the greatest lower 
bound and the least upper bound. Now, consider the 
mapping ZZ →:σ  of the form 

 
),(ˆ),(ˆ),(ˆ)( 21 zmpdszmpdszmpdszz n∨∨∨∨= σ

, 

where Zz∈ . Obviously, it follows that 
 

)(1 ii ZZ σ≡+ , ,2,1,0=i . 
 
 

Lemma 1. The function σ  is monotonic on the chain 
Z . 
 
Proof. 
Suppose that yx ⇒ , where Zyx ∈, . Let jZx ≡ , 

then kZy ≡ , where jk ≥ . According to the property 
)(1 ii ZZ σ≡+ , ,2,1,0=i , we obtain 1)( +≡ jZxσ  

and 1)( +≡ kZyσ  and conclude that 11 ++ ⇒ kj ZZ , i.e. 

)()( yx σσ ⇒ . Based on that, we conclude that the 
function σ  is monotonic on the chain Z . 

Q.E.D. 
 
Lemma 2. The function σ  has the least fixpoint on 
the chain Z . 
 
Proof. 
By Tarski theorem [16] and Lemma 1, the function σ  
has a least fixpoint fixZ  on the complete chain Z , for 

which fixfix ZZ ≡)(σ . 
Q.E.D. 

 
Further, if fixZ  is the least fixpoint (Lemma 2) then 
obviously 

fixj ZZfixj ≡≥∀ )( , 
 
where },2,1,0{, ∈jfix . For the sake of simplicity 
we introduce the function fixp : 
 

),( 0 σZfixpZ fix ≡ . 
 

Theorem 2. (As described analysis) The predicate 
),( σOfixpZ fix ≡  is a strong object invariant in the 

class K , where nullthisO =≡  stands for null-
predicate. 
 
Proof. 
The predicate OZ ≡0  describes null-state and only it. 
By definition null-state is valid, so all states reachable 
from it after fix  transitions are also valid. Thus the 
left to right implication holds, i.e. 

)()( sISsZs Kfix ⇒∀ . Now, suppose that t  is a valid 

state such that ≡⊥)(tZ fix . That means that the state t  
is not reachable after fix  transitions when starting in 
null-state described by 0Z . But then t  can not be 
valid, so right to left implication also holds, i.e. 

)()( sZsISs fixK ⇒∀ . Since both implications hold, 

the equivalence )()( sISsZs Kfix ⇔∀  also holds and 
that proves the theorem. 

Q.E.D. 
 
Now, let us consider the previous Java class: 

 
public class K { 
private int n; 
public K() { n=0; } 
public void m() { 
n++; 
if(n>10)  
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throw new RuntimeException(); 
} 

} 
 
Based on the class K , we obtain: 
 

nullthisK =≡Γ )( , 
9)( ≤∧≠≡Γ nnullthism , 

0))(,(ˆ =′∧≠′∧=≡Γ nnullsthinullthisKKpds , 

19))(,(ˆ +=′∧≤∧≠′∧≠≡Γ nnnnullsthinullthismmpds
. 

We adopt that nullthisZ =≡0  and form the 
following recursive sequence of predicates: 

)0(01 =∧≠∨≡ nnullthisZZ , 

})1,0{(12 ∈∧≠∨≡ nnullthisZZ , 

  
})10,,1,0{(1011 ∈∧≠∨≡ nnullthisZZ , 

})10,,1,0{(1112 ∈∧≠∨≡ nnullthisZZ . 

 
Since 1211 ZZ ≡  we conclude that the predicate 11Z  is 
a fixpoint and 

)100( ≤≤∧≠∨=≡ nnullthisnullthisISK  
is the strong object invariant. 
 

6. Conclusions 

     Conceptual definitions, given in this paper, allow 
independent consideration of class and object 
characteristics. From this conclusion, it is possible to 
clearly classify invariants in the class, which is the 
basis for the analysis of invariants. Analysis of class 
invariants has a central place in the class semantics, 
and therefore in the semantics of object-oriented 
programs. Analysis of invariants can be as prescribed, 
where the invariant is given in advance and as 
described, where the invariant is derived from the 
class. In this paper we have presented both analyses of 
object invariants that are based on the strongest 
dynamic postconditions of methods with the guard as 
the precondition. 
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